Procedural Caves - Cellular Automata

Screen shot of cellular automata to generate caves
procedural_caves_cellular.py
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
"""
This example procedurally develops a random cave based on cellular automata.

For more information, see:
https://gamedevelopment.tutsplus.com/tutorials/generate-random-cave-levels-using-cellular-automata--gamedev-9664
"""

import random
import arcade
import timeit

# Sprite scaling. Make this larger, like 0.5 to zoom in and add
# 'mystery' to what you can see. Make it smaller, like 0.1 to see
# more of the map.
SPRITE_SCALING = 0.125
SPRITE_SIZE = 128 * SPRITE_SCALING

# How big the grid is
GRID_WIDTH = 400
GRID_HEIGHT = 300

# Parameters for cellular automata
CHANCE_TO_START_ALIVE = 0.4
DEATH_LIMIT = 3
BIRTH_LIMIT = 4
NUMBER_OF_STEPS = 4

# How fast the player moves
MOVEMENT_SPEED = 5

# How close the player can get to the edge before we scroll.
VIEWPORT_MARGIN = 300

# How big the window is
WINDOW_WIDTH = 800
WINDOW_HEIGHT = 600

# If true, rather than each block being a separate sprite, blocks on rows
# will be merged into one sprite.
MERGE_SPRITES = True


def create_grid(width, height):
    """ Create a two-dimensional grid of specified size. """
    return [[0 for x in range(width)] for y in range(height)]


def initialize_grid(grid):
    """ Randomly set grid locations to on/off based on chance. """
    height = len(grid)
    width = len(grid[0])
    for row in range(height):
        for column in range(width):
            if random.random() <= CHANCE_TO_START_ALIVE:
                grid[row][column] = 1


def count_alive_neighbors(grid, x, y):
    """ Count neighbors that are alive. """
    height = len(grid)
    width = len(grid[0])
    alive_count = 0
    for i in range(-1, 2):
        for j in range(-1, 2):
            neighbor_x = x + i
            neighbor_y = y + j
            if i == 0 and j == 0:
                continue
            elif neighbor_x < 0 or neighbor_y < 0 or neighbor_y >= height or neighbor_x >= width:
                # Edges are considered alive. Makes map more likely to appear naturally closed.
                alive_count += 1
            elif grid[neighbor_y][neighbor_x] == 1:
                alive_count += 1
    return alive_count


def do_simulation_step(old_grid):
    """ Run a step of the cellular automaton. """
    height = len(old_grid)
    width = len(old_grid[0])
    new_grid = create_grid(width, height)
    for x in range(width):
        for y in range(height):
            alive_neighbors = count_alive_neighbors(old_grid, x, y)
            if old_grid[y][x] == 1:
                if alive_neighbors < DEATH_LIMIT:
                    new_grid[y][x] = 0
                else:
                    new_grid[y][x] = 1
            else:
                if alive_neighbors > BIRTH_LIMIT:
                    new_grid[y][x] = 1
                else:
                    new_grid[y][x] = 0
    return new_grid


class MyGame(arcade.Window):
    """
    Main application class.
    """

    def __init__(self, width, height):
        super().__init__(width, height)

        self.grid = None
        self.wall_list = None
        self.player_list = None
        self.player_sprite = None
        self.view_bottom = 0
        self.view_left = 0
        self.draw_time = 0
        self.physics_engine = None

        arcade.set_background_color(arcade.color.BLACK)

    def setup(self):
        self.wall_list = arcade.SpriteList()
        self.wall_list.use_spatial_hash = True
        self.player_list = arcade.SpriteList()

        # Create cave system using a 2D grid
        self.grid = create_grid(GRID_WIDTH, GRID_HEIGHT)
        initialize_grid(self.grid)
        for step in range(NUMBER_OF_STEPS):
            self.grid = do_simulation_step(self.grid)

        # Create sprites based on 2D grid
        if not MERGE_SPRITES:
            # This is the simple-to-understand method. Each grid location
            # is a sprite.
            for row in range(GRID_HEIGHT):
                for column in range(GRID_WIDTH):
                    if self.grid[row][column] == 1:
                        wall = arcade.Sprite("images/grassCenter.png", SPRITE_SCALING)
                        wall.center_x = column * SPRITE_SIZE + SPRITE_SIZE / 2
                        wall.center_y = row * SPRITE_SIZE + SPRITE_SIZE / 2
                        self.wall_list.append(wall)
        else:
            # This uses new Arcade 1.3.1 features, that allow me to create a
            # larger sprite with a repeating texture. So if there are multiple
            # cells in a row with a wall, we merge them into one sprite, with a
            # repeating texture for each cell. This reduces our sprite count.
            for row in range(GRID_HEIGHT):
                column = 0
                while column < GRID_WIDTH:
                    while column < GRID_WIDTH and self.grid[row][column] == 0:
                        column += 1
                    start_column = column
                    while column < GRID_WIDTH and self.grid[row][column] == 1:
                        column += 1
                    end_column = column - 1

                    column_count = end_column - start_column + 1
                    column_mid = (start_column + end_column) / 2

                    wall = arcade.Sprite("images/grassCenter.png", SPRITE_SCALING,
                                         repeat_count_x=column_count)
                    wall.center_x = column_mid * SPRITE_SIZE + SPRITE_SIZE / 2
                    wall.center_y = row * SPRITE_SIZE + SPRITE_SIZE / 2
                    wall.width = SPRITE_SIZE * column_count
                    self.wall_list.append(wall)

        # Set up the player
        self.player_sprite = arcade.Sprite("images/character.png", SPRITE_SCALING)
        self.player_list.append(self.player_sprite)

        # Randomly place the player. If we are in a wall, repeat until we aren't.
        placed = False
        while not placed:

            # Randomly position
            max_x = GRID_WIDTH * SPRITE_SIZE
            max_y = GRID_HEIGHT * SPRITE_SIZE
            self.player_sprite.center_x = random.randrange(max_x)
            self.player_sprite.center_y = random.randrange(max_y)

            # Are we in a wall?
            walls_hit = arcade.check_for_collision_with_list(self.player_sprite, self.wall_list)
            if len(walls_hit) == 0:
                # Not in a wall! Success!
                placed = True

        self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite,
                                                         self.wall_list)

    def on_draw(self):
        """ Render the screen. """

        # Start timing how long this takes
        draw_start_time = timeit.default_timer()

        # This command should happen before we start drawing. It will clear
        # the screen to the background color, and erase what we drew last frame.
        arcade.start_render()

        # Draw the sprites
        self.wall_list.draw()
        self.player_list.draw()

        # Draw info on the screen
        sprite_count = len(self.wall_list)

        output = f"Sprite Count: {sprite_count}"
        arcade.draw_text(output,
                         self.view_left + 20,
                         WINDOW_HEIGHT - 20 + self.view_bottom,
                         arcade.color.WHITE, 16)

        output = f"Drawing time: {self.draw_time:.3f}"
        arcade.draw_text(output,
                         self.view_left + 20,
                         WINDOW_HEIGHT - 40 + self.view_bottom,
                         arcade.color.WHITE, 16)

        output = f"Processing time: {self.processing_time:.3f}"
        arcade.draw_text(output,
                         self.view_left + 20,
                         WINDOW_HEIGHT - 60 + self.view_bottom,
                         arcade.color.WHITE, 16)

        self.draw_time = timeit.default_timer() - draw_start_time


    def on_key_press(self, key, modifiers):
        """Called whenever a key is pressed. """

        if key == arcade.key.UP:
            self.player_sprite.change_y = MOVEMENT_SPEED
        elif key == arcade.key.DOWN:
            self.player_sprite.change_y = -MOVEMENT_SPEED
        elif key == arcade.key.LEFT:
            self.player_sprite.change_x = -MOVEMENT_SPEED
        elif key == arcade.key.RIGHT:
            self.player_sprite.change_x = MOVEMENT_SPEED

    def on_key_release(self, key, modifiers):
        """Called when the user releases a key. """

        if key == arcade.key.UP or key == arcade.key.DOWN:
            self.player_sprite.change_y = 0
        elif key == arcade.key.LEFT or key == arcade.key.RIGHT:
            self.player_sprite.change_x = 0

    def update(self, delta_time):
        """ Movement and game logic """

        start_time = timeit.default_timer()

        # Call update on all sprites (The sprites don't do much in this
        # example though.)
        self.physics_engine.update()

        # --- Manage Scrolling ---

        # Track if we need to change the viewport

        changed = False

        # Scroll left
        left_bndry = self.view_left + VIEWPORT_MARGIN
        if self.player_sprite.left < left_bndry:
            self.view_left -= left_bndry - self.player_sprite.left
            changed = True

        # Scroll right
        right_bndry = self.view_left + WINDOW_WIDTH - VIEWPORT_MARGIN
        if self.player_sprite.right > right_bndry:
            self.view_left += self.player_sprite.right - right_bndry
            changed = True

        # Scroll up
        top_bndry = self.view_bottom + WINDOW_HEIGHT - VIEWPORT_MARGIN
        if self.player_sprite.top > top_bndry:
            self.view_bottom += self.player_sprite.top - top_bndry
            changed = True

        # Scroll down
        bottom_bndry = self.view_bottom + VIEWPORT_MARGIN
        if self.player_sprite.bottom < bottom_bndry:
            self.view_bottom -= bottom_bndry - self.player_sprite.bottom
            changed = True

        if changed:
            arcade.set_viewport(self.view_left,
                                WINDOW_WIDTH + self.view_left,
                                self.view_bottom,
                                WINDOW_HEIGHT + self.view_bottom)

        # Save the time it took to do this.
        self.processing_time = timeit.default_timer() - start_time


def main():
    game = MyGame(WINDOW_WIDTH, WINDOW_HEIGHT)
    game.setup()
    arcade.run()


if __name__ == "__main__":
    main()